

Enseignants: Dovi, Huruguen, Burmeister

Algèbre linéaire - CMS

13 janvier 2023 Durée : 105 minutes

Contrôle 2 (Corrigé)

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 9 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant.e sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix unique, on comptera:
 - les points indiqués si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - 0 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien				
choisir une réponse select an answe Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren		
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte				

Première partie, questions à choix unique

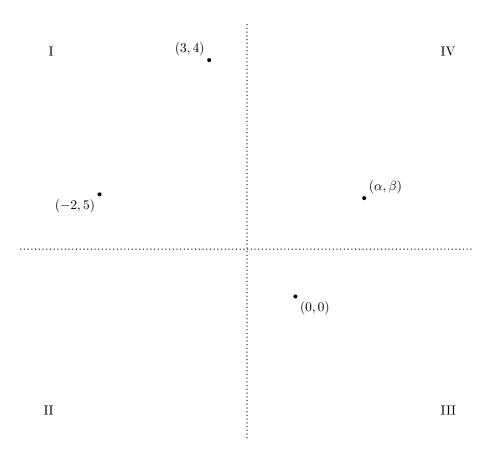
Pour chaque énoncé proposé, plusieurs questions sont posées. Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Enoncé

On considère l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que :

$$[f]_{\mathcal{B}} = \begin{pmatrix} 0 & -3 \\ 2 & -7 \end{pmatrix}$$
 où $\mathcal{B} = (-2, 5), (3, 4).$

Par ailleurs, on visualise \mathbb{R}^2 comme ci-dessous (vous pouvez écrire sur le dessin) :



Les deux droites en pointillés découpent le plan en quatre zones numérotées en chiffre romain de I à IV. Par exemple, (0,0) appartient à la zone III et (α,β) à la zone IV. Dans quelle zone se trouve ...

Question 1	$(2 points) \dots (5,-1)$?		
☐ III	☐ II	I	IV
Question 2	(2 points) $f(-2,5)$?		
Question 3	(2 points) $f(\alpha, \beta)$?	Пт	

Enoncé

On considère, en fonction du paramètre $\alpha \in \mathbb{R}$, l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ de matrice :

$$A = \begin{pmatrix} \alpha - 1 & 3 - 2\alpha \\ 1 & \alpha + 1 \end{pmatrix}$$

en base canonique.

(2 points) On suppose dans cette question que $\alpha = 4$. Parmi les matrices suivantes, une seule est une forme réduite de f. Laquelle ?

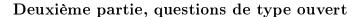
- $\blacksquare \begin{pmatrix} 4 & 2 \\ -2 & 4 \end{pmatrix}$
- $\square \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \qquad \square \begin{pmatrix} 4 & 4 \\ -4 & 4 \end{pmatrix} \qquad \square \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix}$

(1 point) On suppose dans cette question que $\alpha = 0$. Parmi les vecteurs suivants, sélectionner celui qui est vecteur propre pour f:

- (1,1)
- (1, -3)
- (3,1)

Question 6 (2 points) L'application f est diagonalisable si et seulement si :

- $\alpha > 2$
- $\alpha < 2$
- $\alpha \geqslant 2$
- $\alpha \leq 2$



Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

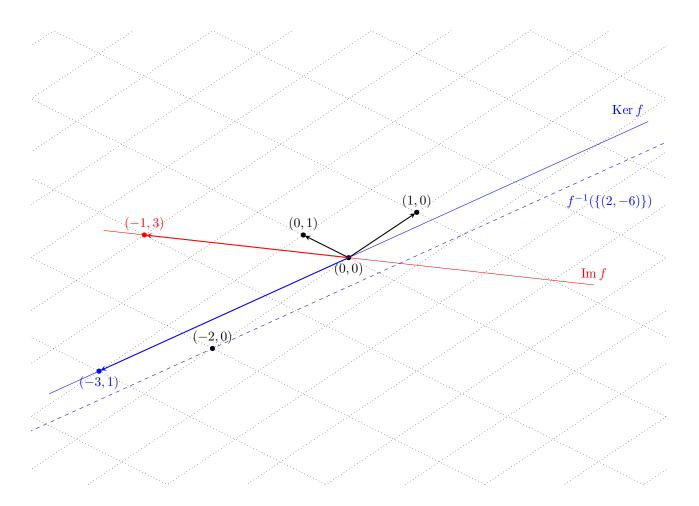
Question 7: Cette question est notée sur 6 points.

On considère l'application :

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (-x - 3y, 3x + 9y).$$

- (a) Déterminer Im f et Ker f et les représenter sur le dessin ci-dessous dans lequel on a choisi les points du plan représentant les couples (0,0),(1,0),(0,1).
- (b) Déterminer $f^{-1}(\{(2,-6)\})$ et $f^{-1}(\{(1,3)\})$ et les représenter également sur le dessin ci-dessous.

Données graphiques:



Solution

(a) La matrice de f relativement à $\mathcal{B}_{\operatorname{can}}$ s'écrit $A = \begin{pmatrix} -1 & -3 \\ 3 & 9 \end{pmatrix}$.

A étant de rang 1 (det A=0 et $A\neq 0$), on peut l'écrire $A=\begin{pmatrix} -1\\3 \end{pmatrix}$ (1 3). Par conséquent, on a directement

$$\operatorname{Im} f = \operatorname{Vect}[(-1,3)] \qquad \underbrace{\operatorname{Ker} f : x + 3y = 0}_{\operatorname{Vect}[(-3,1)]}.$$

Sur le dessin, on place les points (-1,3) et (-3,1) et on trace ces droites.

(b) On cherche l'ensemble des antécédents.

$$f^{-1}(\{(u,v)\}) = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = (u,v)\}.$$

Il est non vide si et seulement si (u, v) appartient à $\operatorname{Im} f$.

• $(2, -6) \in \text{Im } f$:

$$\begin{pmatrix} -1\\3 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 2\\-6 \end{pmatrix}$$

$$f^{-1}(\{(2,-6)\}) = \{(x,y) \in \mathbb{R}^2 \mid x+3y = -2\}.$$

C'est la droite parallèle à Ker f passant par (-2,0) (V. dessin).

 $\bullet \ (1,3) \not \in {\rm Im} \ f \colon f^{-1}(\{(1,3)\}) = \emptyset.$

Question 8: Cette question est notée sur 6 points.

On considère l'application linéaire :

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (-x-2y, 3x+4y).$$

- (a) Déterminer la matrice de f relativement à la base $\mathcal{B}=(1,-1),(2,1)$.
- (b) Soit $v \in \mathbb{R}^2$ tel que $[v]_{\mathcal{B}} = {5 \choose 1}$. Que vaut f(v)?
- (c) Parmi les 4 matrices ci-dessous, les quelles représentent également l'application f, dans des bases différentes ? On ne demande pas ces bases. Justifier votre résultat.

$$R = \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \qquad T = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix} \qquad U = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$

Solution

(a) La matrice de f relativement à $\mathcal{B}_{\operatorname{can}}$ s'écrit $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

La matrice de passage de \mathcal{B}_{can} à \mathcal{B} est

$$P = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \qquad P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}.$$

Alors

$$\begin{split} [f]_{\mathcal{B}} &= P^{-1}AP &= \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} -7 & -10 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -4 \\ -1 & 10 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -8 \\ 0 & 2 \end{pmatrix}. \end{split}$$

(b) Par changement de base sur \vec{v} : $[\vec{v}]_{\mathcal{B}_{can}} = P[\vec{v}]_{\mathcal{B}}$.

$$[\vec{v}]_{\mathcal{B}_{can}} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$$

Ainsi

$$\vec{v} = (7, -4)$$
 et $f(\vec{v}) = (1, 5)$.

Alternativement, par changement de base sur $f(\vec{v})$: $[f(\vec{v})]_{\mathcal{B}_{can}} = P[f(\vec{v})]_{\mathcal{B}}$.

$$[f(\vec{v})]_{\mathcal{B}_{can}} = \begin{pmatrix} 1 & -8 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}.$$

Alors

$$[f(\vec{v})]_{\mathcal{B}_{can}} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Ainsi

$$f(\vec{v}) = (1,5)$$
.

Alternativement, par définition des composantes:

$$\vec{v} = 5(1, -1) + 1(2, 1) = (7, -4)$$

d'où

$$f(\vec{v}) = (1,5)$$
.

(c) Deux matrices représentent la même application relativement à deux bases ssi leurs formes réduites sont les mêmes. Une condition nécessaire est que les polynômes caractéristiques coïncident.

$$A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$$
 $\operatorname{tr} A = 3$ $\det A = 2$.

Comme $\chi_f(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$, f possède deux valeurs propres distinctes et est donc diagonalisable. La condition du même polynôme caractéristique est donc suffisante (pas de discussion comme pour $\Delta = 0$).

La seule matrice qui convient est T.

Question 9: Cette question est notée sur 7 points.

(a) Calculer les termes généraux des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sachant que :

$$\begin{cases} u_0 = 15 \\ v_0 = -13 \end{cases} \text{ et } \forall n \in \mathbb{N}, \quad \begin{cases} u_{n+1} = -\frac{1}{2}u_n - v_n \\ v_{n+1} = u_n + \frac{3}{2}v_n. \end{cases}$$

(b) A partir de quelle valeur de n a-t-on $u_n < 0$?

Solution

(a) Soit
$$A = \begin{pmatrix} -\frac{1}{2} & -1\\ 1 & \frac{3}{2} \end{pmatrix}$$
. On a donc

$$\left(\begin{array}{c} u_{n+1} \\ v_{n+1} \end{array}\right) = A \left(\begin{array}{c} u_n \\ v_n \end{array}\right)$$

et donc

$$\left(\begin{array}{c} u_n \\ v_n \end{array}\right) = A^n \left(\begin{array}{c} u_0 \\ v_0 \end{array}\right) = A^n \left(\begin{array}{c} 15 \\ -13 \end{array}\right)$$

Procédons à la réduction de A:

$$tr A = 1$$
 et $\det A = -\frac{3}{4} + 1 = \frac{1}{4}$

$$\chi_A(X) = X^2 - X + \frac{1}{4} = (X - \frac{1}{2})^2$$

A n'est pas diagonalisable car $A \neq \frac{1}{2}I_2$.

On a

$$A - \frac{1}{2}I_2 = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} (1 \quad 1)$$

Le sous-espace propre de la valeur propre $\frac{1}{2}$ est d'équation x + y = 0.

On peut choisir comme deuxième vecteur de base : v=(1,0) et le premier vecteur de base est alors $u=f(v)-\frac{1}{2}v=(-\frac{1}{2},1)-\frac{1}{2}(1,0)=(-1,1)$

On a donc
$$R = P^{-1}AP = \begin{pmatrix} \frac{1}{2} & 1\\ 0 & \frac{1}{2} \end{pmatrix}$$
 avec $P = \begin{pmatrix} -1 & 1\\ 1 & 0 \end{pmatrix}$

$$A^n = PR^nP^{-1} = \left(\begin{array}{cc} -1 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} (\frac{1}{2})^n & n(\frac{1}{2})^{n-1} \\ 0 & (\frac{1}{2})^n \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right) =$$

$$= \left(\frac{1}{2}\right)^{n-1} \left(\begin{array}{cc} -1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & n \\ 0 & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) =$$

$$= (\frac{1}{2})^{n-1} \left(\begin{array}{cc} -1 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} n & n+\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right) =$$

$$= (\frac{1}{2})^{n-1} \begin{pmatrix} -n + \frac{1}{2} & -n \\ n & n + \frac{1}{2} \end{pmatrix}$$

On a donc

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = A^n \begin{pmatrix} 15 \\ -13 \end{pmatrix} = \begin{pmatrix} (\frac{1}{2})^{n-1}(-2n + \frac{15}{2}) \\ (\frac{1}{2})^{n-1}(2n - \frac{13}{2}) \end{pmatrix}$$

D'où

$$\begin{cases} u_n = (\frac{1}{2})^{n-1}(-2n + \frac{15}{2}) \\ v_n = (\frac{1}{2})^{n-1}(2n - \frac{13}{2}) \end{cases} \forall n \in \mathbb{N}$$

(b) $u_n < 0$ si et seulement si $-2n + \frac{15}{2} < 0$ c'est-à-dire $n \ge 4$ car n entier.